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Abstract. Ontology matching techniques are evolving towards more
sophisticated approaches, and there is a growing interest in discover-
ing more complex kinds of mappings. Existing techniques are limited to
matching two ontologies, but we argue that producing ‘compound’ align-
ments, involving more than two ontologies, would be useful to support a
next generation of semantic technologies.
To foster the development of new techniques in this area, we have in-
vestigated the suitability of exploring OBO cross-products to derive
ternary compound alignments that can be used as a benchmark. We
were able to establish seven such reference alignments with over 100
mappings each, between ten biomedical ontologies. We conducted prelim-
inary experiments to explore the challenges this type of mapping poses for
methods commonly used by existing alignment systems. These revealed
that the increase in matching space and the inherently more difficult-
to-compute ternary mapping pose interesting difficulties to compound
ontology matching.

Keywords: Ontology Matching, Compound Ontology Matching, Ternary
Mapping

1 Introduction

Establishing meaningful links between related ontologies is a critical requirement
for their interoperability and for realizing the semantic web vision. Throughout
the last decade, ontology matching systems have increased in both sophistication
and performance [1, 2].
Most ontology matching systems produce equivalence mappings between classes
or properties in two ontologies, but in recent years there has been a growing
interest in discovering more complex kinds of mappings, such as those between
complex concept and property descriptions [3–7]. These can support a number
of tasks, including query rewriting [8], and have been identified as one of the
future directions for ontology matching [9]. Both the ‘classical’ and ‘complex’
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ontology matching approaches focus on discovering mappings between two on-
tologies. However, in an open, distributed and heterogeneous setting such as the
semantic web, to support more elaborate tasks and further improve interoper-
ability it may be advantageous to create mappings by combining entities from
more than two ontologies.
We argue that it would be useful for the developers of ontology alignment sys-
tems to develop new techniques and tools for identifying ’compound matches’,
i.e. matches between class or property expressions involving more than two on-
tologies. The simplest of these mappings would correspond to an equivalence
mapping between a class A of one ontology and an expression relating classes B
and C of two other ontologies, constituting a ternary relationship. To the best
of our knowledge, there are currently no ontology matching systems capable of
generating such mappings. One likely reason for this is the lack of an accepted
benchmark for measuring a system’s performance on identifying this type of
mapping. However, several OBO ontologies provide cross-products from which
ternary compound mappings can be derived. The purpose of this work is then
to investigate the suitability of exploring OBO cross-products to create ternary
compound alignments between ontologies. Since OBO cross-products are manu-
ally curated, our ultimate goal is to create a set of alignments that can function
as a gold-standard to support the evaluation of novel matching methods for com-
pound alignment. We begin the paper by formally defining a compound mapping
and describing our approach of leveraging OBO cross-products to create com-
pound mapping reference alignments for several sets of ontologies. Once we have
established the reference alignments, we use them to perform a preliminary ex-
ploration of the challenges this type of mapping poses for methods commonly
used by existing alignment systems.

2 Approach

This section introduces the terminology we employ throughout the paper and
presents the basics of our approach. We consider that a ternary compound align-
ment is a set of correspondences (mappings) between classes from a source on-
tology Os and class expressions obtained by combining two other classes each
belonging to a different target ontology Ot1 and Ot2.
This means that the classic mapping definition, where a mapping belonging to
the alignment between ontologies Os and Ot is defined as a triple < X,Y,M >,
where X is an entity belonging to Os, Y is an entity belonging to Ot and M
is a mapping relation such as equivalence or subsumption, cannot be applied.
Instead, we define a ternary compound mapping as a tuple < X,Y, Z,R,M >,
where X, Y and Z are classes from three distinct ontologies, R is a relation es-
tablished between Y and Z to generate a class expression that is mapped to X
via a mapping relation M. Here, we consider the ontology to which X belongs to
be the source ontology, and the ontologies that define Y and Z to be the target
ontologies.
Some of the logical definitions contained in OBO cross-products correspond to
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this type of mapping, when M is an equivalence. As such we were interested in
investigating the suitability of using OBO cross-products as a source of ternary
compound mappings.

2.1 OBO cross-products

The OBO Foundry [10] is a collaborative initiative for establishing a set of prin-
ciples for ontology development in the biomedical domain. Its goal is to support
the creation of orthogonal interoperable reference ontologies. Ontologies that
adhere to all principles are considered full members, whereas ontologies that ad-
here to only some of the principles are viewed as candidates. OBO cross-products
were created to provide computable logical definitions for classes, by weaving to-
gether multiple OBO and OBO candidate ontologies. A large portion of OBO
cross-products [11] are genus-differentia constructs of the form “an X is a G
that D”, where X is the defined class, G is the superclass, and D corresponds
to the characteristics that serve to differentiate instances of X from other in-
stances of G specified using relations from the Relation Ontology (RO). These
constructs typically involve two ontologies, one to which X and G belong, and
another which provides classes to be used in D. These are represented in the
OBO Format using intersection of tags, as depicted in Figure 1.

Fig. 1: Definition of a GO class in OBO with a cross-product involving GO and CHEBI
classes.

However, there are also logical definitions that employ other constructs based
exclusively on classes from other ontologies. For instance, many of the classes in
the Human Phenotype Ontology have definitions that are composed of classes
from the PATO and FMA ontologies (see Figure 2).

Fig. 2: Definition of a HP class in OBO with a cross-product involving PATO and FMA
classes.
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These kinds of cross-products can then be interpreted as a mapping between
the class that is being defined and a complex class expression between two other
classes.
Take as an example the class definition present in Figure 2. The class HP:0000337
labeled broad forehead is equivalent to an axiom obtained by relating the classes
PATO:0000600 (increased width) and FMA:63864 (forehead) via an intersection
qualified by an inheres in relation. So, in this case, and going back to the ternary
compound mapping definition: A is the HP class, B and C are PATO and FMA
classes, R is an intersection, and M is equivalence.

2.2 Selecting cross-products collections to build alignments

We analyzed all thirty resources available at obofoundry.org 1. We defined the
following criteria to identify cross-products that are suitable to serve as a basis
for a reference alignment:

– They represent a ternary relationship, whereby two classes are combined in
a class expression that is equivalent to a third class

– Each of the classes belongs to a different ontology

– For each trio of ontologies, at least one hundred cross-products is available

The first two criteria filter out cross-products of the genus-differentia type
and cross-products involving more than three classes. The third criterion ensures
we obtain reference alignments of reasonable size, taking into consideration the
dimension of the ontologies involved, and thus are useful to evaluate ternary
ontology matching tasks.

These criteria resulted in a set of seven cross-products collections presented
in Table 1.

Table 1: Selected cross-products collections

Source Ontology Target Ontologies Size

MP PATO UBERON 1725

HP PATO FMA 1519

MP PATO CL 407

WBPhenotype PATO GO 369

MP PATO GO 354

FYPO PATO GO 285

MP PATO NBO 100

1 http://obofoundry.org/index.cgi?show=mappings
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2.3 Representing a ternary compound mapping

To create the alignments based on the cross-products collections we used EDOAL
(Expressive Declarative Ontology Alignment Language) [12], since it allows the
construction of entities from other entities using algebraic operators. To repre-
sent intersection of we employed a class expression with the and operator. The
following represents one compound ternary mapping in EDOAL using as source
the OBO cross-product in Figure 2:

<align:map>

<align:Cell>

<align:entity1>

<edoal:Class rdf:about="http://purl.obolibrary.org/obo/HP_0000337"/>

</align:entity1>

<align:entity2>

<edoal:Class>

<edoal:and rdf:parseType="Collection">

<edoal:Class rdf:about="http://purl.obolibrary.org/obo/PATO_0000600"/>

<edoal:Class rdf:about="http://purl.obolibrary.org/obo/FMA_63864"/>

</edoal:and>

</edoal:Class>

</align:entity2>

<measure rdf:datatype="xsd:float">1.0</measure>

<relation>=</relation>

</align:Cell>

</align:map>

3 Ontologies and Compound Alignments

The seven cross-products collections that fullfil our requirements are based on ten
distinct ontologies, which are listed in Table 2. Notably, all seven collections share
the Phenotypic Quality Ontology (PATO) as one of the target ontologies. This is
unsurprising since all source ontologies are dedicated to representing phenotypes,
i.e., the observable characteristics of an organism, and as such their classes can
be logically defined by associating a given entity (e.g., forehead) with a specific
characteristic (e.g., increased width). There has been a focused effort on the part
of OBO ontologies to provide logical definitions in the form of cross-products for
phenotype ontologies [13]. Cross-product creation was partially automated, but
all cross-products are manually validated by at least two experts, and reasoners
are employed to check for logical consistency.
Table 3 presents some statistics about the created alignments.



6 Pesquita et. al

Table 2: Ontologies in cross-products collections

Acronym Name Classes Domain

FYPO [14] Fission Yeast Phenotype Ontology 6,176 Fission yeast phenotypes

HP [15] Human Phenotype Ontology 10,593
Phenotypes of human

hereditary and other diseases

MP [16] Mammalian Phenotyope Ontology 10,730 Mammalian phenotypes

NBO [17] Neurobehavior Ontology 1,070
Behavior processes and normal

and abnormal behavior phenotypes

WBPhenotype [18] C. elegans Phenotype Vocabulary 2,185 C. elegans phenotypes

PATO [19] Phenotypic Quality Ontology 2,444 Phenotypic qualities or properties

CL [20] Cell Ontology 5,901 Cell types

FMA [21] Foundational Model of Anatomy 83,283 Human anatomy

GO [22] Gene Ontology 41,300 Gene product function

UBERON [23] Uber Anatomy Ontology 12,808 Integrated cross-species anatomy

Information collected from BioPortal2 in July 2014.

Table 3: Compound reference alignments composition

Alignment Mappings Unique Target 1 Classes Unique Target 2 Classes

HP-PATO-FMA 1519 181 533

MP-PATO-UBERON 1725 210 679

MP-PATO-CL 407 33 171

MP-PATO-GO 354 60 205

MP-PATO-NBO 100 16 60

WBPhenotype-PATO-GO 369 59 254

FYPO-PATO-GO 285 21 166

4 Towards Ternary Ontology Matching

We explored the problem of ternary ontology matching, first by characterizing
it, through the analysis of the mappings derived from the OBO cross-products,
and then by conducting preliminary matching experiments.

4.1 Cross-Product Mapping Analysis

One of the principles accepted by the OBO Foundry is concerned with following
naming conventions [24]. Two of these naming conventions are particularly tied
to cross-products:

– Recycle strings: when creating compound names re-use strings as they
occur in names of entities already defined elsewhere in this or in other on-
tologies.

– Use genus-differentia style names: apply modifiers to the head word
of a class name to reflect the distinction from its parent class (e.g., broad
forehead).

Given these characteristics we were interested in investigating the string similar-
ity between the label of the source class and the union of the labels of the target
classes. Furthermore, the importance of lexical based similarity for biomedical
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ontology matching [25] and the high performance of string similarity in several
ontology matching problems [26], make string similarity a logical first step to-
wards matching these ontologies.
A simple computation of the exact similarity between the label of the source
class and the concatenation of target labels produced the results in Table 4.

Table 4: Exact string similarity between source label and the concatenation of target
labels.

Alignment Exact Similarity Mappings Total Mappings

HP-PATO-FMA 100 1519

FYPO-PATO-GO 4 285

MP-PATO-CL 1 407

MP-PATO-GO 18 354

MP-PATO-UBERON 76 1725

MP-PATO-NBO 0 100

WBPhenotype-PATO-GO 61 369

Very few of the mappings actually correspond to this compositional pattern,
despite the OBO Foundry guidelines. However, in most cross-product mappings,
the label of the source class shares at least one word with each of the target
classes. Thus, we considered that a simple bag-of-words similarity would be the
best approach to measure the overlap between the source and the union of the
target labels.
We computed bag-of-words similarity by representing the label of each class as
a set of words and joining the sets of the two target classes in a single set. Then
we computed the intersection between the source and united target sets, and
obtained a similarity score by dividing the cardinality of the intersection by the
cardinality of the source set:

sim =
|(S ∩ (T1 ∪ T2))|

|S|
(1)

We calculated these similarities for all mappings in each alignment. Figure
3 presents these results as percentage based histograms for each alignment. For
most alignments, over 70% of the mappings share more than half the words.

4.2 Matching Experiments

In ontology matching, a common approach is to compute similarities between
all classes of each of the ontologies. In standard binary matching problems, this
leads to a quadratic search space, and so state-of-the-art ontology matching sys-
tems employ ‘anchor’-based strategies to increase efficiency [27, 28]. In ternary
ontology matching, the search space is cubic, so matching even relatively small
ontologies can pose efficiency problems. For instance, the search space in the MP-
PATO-GO alignment is on the order of 1012. Moreover, the nature of the problem
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Fig. 3: Distribution of label similarity for each generated alignment. Each slice
corresponds to a 0.1 interval of similarity.The height of each slice corresponds to the
percentage of mappings whose label similarity falls within that interval.

does not lend itself to the use of full label matches, which are the most efficient
‘anchor’-based matching strategy. While theoretically possible, ‘anchor’-based
word-matching [27] would have quadratic memory requirements, as we would
need to compute all combinations of labels from both target ontologies.
The one aspect which facilitates efficiency is that we are only interested in cap-
turing mappings where both target classes overlap in words with the source class.
Thus, we can reduce the search space by first matching the source ontology to
each to the target ontologies individually, using an ‘anchor’-based word-matching
algorithm, and then matching only all pairs of target classes that map individ-
ually to the same source class. This was precisely the matching strategy we
implemented to test ternary ontology matching.
Our implementation was based on the ontology matching system Agreement-
MakerLight [27], and made use of its ‘anchor’-based WordMatcher, which mea-
sures similarity between two classes through a weighted Jaccard index between
the words present in their labels.
To measure similarity between the source labels and merged target labels, we
need to ensure that the target labels cover different portions of the source la-
bel, rather than sharing the same words. To this end, we employed a modified
Jaccard index as a similarity metric:

WordMatch =
|(S ∩ (T1 ∪ T2))| − |(T1 ∩ T2)|

|S ∪ T1 ∪ T2|
(2)

This similarity metric accounts for the overlap between source and target
labels, while penalizing words shared by both targets.
In spite of the reduced search space, we were not able to test this matching



Building reference alignments for compound matching of multiple ontologies 9

strategy on trios that included the larger ontologies. We tested it in the MP-
PATO-CL and MP-PATO-NBO alignments, obtaining recall values of 30 and
11% respectively, but precision values below 1%. These results are due to both
the sheer dimension of the search space and the fact that the WordMatcher
approach is unable to discriminate between a high number of candidate mappings
that all share high similarities. Consider the following example:

Table 5: Example of indistinguishable mappings

Mapping Type Source Class Target 1 Class Target 2 Class

correct
MP:0003545 PATO:0000912 NBO:0000131

increased alcohol consumption increased rate alcohol consumption

candidate
MP:0003545 PATO:0002361 NBO:0000131

increased alcohol consumption increased tendency alcohol consumption

candidate
MP:0003545 PATO:0002017 NBO:0000131

increased alcohol consumption increased magnitude alcohol consumption

There are 105 classes in PATO whose labels contain the word ‘increased’, of
these only 29 contain more than two words. So even if we penalize non-matching
words, there are 76 classes who give rise to the same similarity score.
These results highlight some of the complexity behind compound alignments,
even between ontologies that strive to follow the same naming conventions. We
posit that to solve these issues, matching techniques would need some form of
background knowledge or instances, to provide additional information able to
discriminate between the candidate mappings.

5 Related Work

The most common way of evaluating an ontology matching system is through
comparison of the alignment produced by the system with a reference alignment.
This has been the standard method of evaluation conducted at the Ontology
Alignment Evaluation Initiative [29]. Typically, reference alignments are manu-
ally constructed, however, the difficulty in creating these resources has motivated
alternative methods of evaluation and reference creation.
One alternative method is to evaluate created mappings a posteriori. This ap-
proach has been used in the OAEI conference track [30], and over the years
resulted in the construction of a reference alignment. However, the evaluation
of complex correspondences is still manually conducted. In fact, establishing a
reference alignment for complex correspondences is a complex and cumbersome
task, so resorting to manual validation of generated mappings is needed [5]. How-
ever, this only allows identification of true positives and false positives (not false
negatives), making it impossible to compute recall.
Employing external resources to support the creation of reference alignments
has been used before in the biomedical domain, in the context of the Large
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Biomedical Track of OAEI [31]. The UMLS Metathesaurus was used to au-
tomatically derive alignments between biomedical ontologies, which were then
refined by employing automated repair methods and a few manual corrections.
These alignments have been successfully used in recent OAEI editions, helping
to answer the challenge of providing large-scale evaluation of ontology matching.

6 Conclusions

The field of ontology matching has been evolving in recent years to address
some of its biggest challenges: efficiency, consistency, using background knowl-
edge, user interaction, etc. One crucial aspect of fostering the development of
new methods is the ability to evaluate performance. For instance, in the Large
Biomedical Ontology track of OAEI, matching the track’s ontologies can result
in logical inconsistencies. In 2012 only one system [28] was capable of adequately
handling them, but in 2013 two other systems were also employing existing or
novel repair techniques [32, 33]. It is clear that well-crafted benchmarks can drive
innovation in a field.
With this work we have taken a first step in promoting the expansion of on-
tology matching systems towards more complex techniques that are capable of
identifying more complicated relationships among multiple ontologies. Our pre-
liminary experiments have shown that there are a number of issues in addressing
this challenge, including the increase in matching space and the inherently more
difficult-to-compute ternary mapping. Nevertheless, we look forward to a next-
generation of ontology matching systems that go beyond equivalent 1:1 mappings
and open up new application avenues.
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